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a b s t r a c t

Quantitative structure-retention relationships (QSRR) were proposed for �1-acid glycoprotein (AGP) col-
umn using physicochemical molecular descriptors of the selected drugs and interacting with that column.
The set of 52 structurally diverse drug compounds, with experimentally derived logarithms of retention
factors (log k) values was considered. Thirty-six physicochemical property descriptors were calculated
eywords:
NN analysis
SRR
1-Acid glycoprotein (AGP) column

by standard molecular modeling and used to establish QSRR and predict the retention data by artificial
neural network (ANN). The QSRR indicated that heat of formation (HF), Moriguchi n-octanol–water par-
tition coefficient (M log P) and the energy of the highest occupied molecular orbital (HOMO) are the most
important for interactions between drugs and AGP. The proposed ANN model based on selected molec-
ular descriptors showed a high degree of correlation between log k observed and computed. The final
model possessed a 36-5-1 architecture and correlation coefficients for learning, validating and testing

and 0

olecular descriptors

sets equaled 0.975, 0.950

. Introduction

Affinity chromatography (AC) is a liquid chromatography tech-
ique based on reversible interactions between the binding site of a
acromolecule and an analyte molecule. Affinity chromatographic

ystems are obtained by immobilization of one of the pair of inter-
cting molecules on a solid support and packing it into a column [1].
he stationary phase in AC is the main factor controlling the sep-
ration of compounds. Protein stationary phases were introduced
rst in the early 1980s [2–4]. For enantiospecific separations on
C supports containing ovomucoid [5], flavoprotein [6], avidin [7]
nd pepsin [8] were developed. Macromolecules currently used to
orm AC stationary phases are: human serum albumin [9], �1-acid
lycoprotein (AGP) [10], keratin [11], collagen [12], melanin [13],
mylose tris(3,5-dimethylphenylcarbamate) [14] and the basic fatty
cid-binding protein from chicken liver [15].

Affinity chromatography, followed by quantitative structure-

etention relationships (QSRR) analysis, provides information on
oth the analytes and the macromolecules forming the station-
ry phases. QSRR equations derived for test series of analytes
often drugs) are interpreted in terms of structural requirements

∗ Corresponding author. Tel.: +48 52 585 39 09.
E-mail address: kizbiofarmacji@cm.umk.pl (A. Buciński).

731-7085/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpba.2008.11.005
.972, respectively.
© 2008 Elsevier B.V. All rights reserved.

of the specific binding sites on macromolecules. Chromato-
graphically demonstrated differences in analyte/macromolecule
interactions may be relevant in view of molecular pharmacol-
ogy and rational drug design. Moreover, specific high-performance
affinity-chromatographic separations can be optimized by ratio-
nal selection of chiral columns, the characteristics of which are
provided by QSRR.

Barbato et al. [16] derived the relationships between the reten-
tion on AGP column and the lipophilic parameters of 23 amines.
It was concluded that only the (S)-forms of neutral congeners
get into mainly lipophilicity-driven interactions with AGP. On the
other hand, the (R)-forms interact by a more complex mechanism,
not exactly explained by log P or chromatographically determined
lipophilicity parameter obtained on the so-called immobilized arti-
ficial membrane (IAM) column (log kwIAM).

An AGP column was employed in the experiments performed
by Kaliszan et al. [17]. The aim of that study was to characterize
structurally the binding site for organic-base drugs on the pro-
tein stationary phase. For a short series of �-adrenolytic drugs,
for which the AGP-binding data determined by a standard bio-

chemical procedure were available, a good correlation was found
between the percent binding and log k from AC. The same authors
[18] examined the retention mechanism on an AGP column of 16
antihistamine drugs. It appeared that the log kAGP values from AC
correlated significantly with the chromatographic hydrophobicity

http://www.sciencedirect.com/science/journal/07317085
http://www.elsevier.com/locate/jpba
mailto:kizbiofarmacji@cm.umk.pl
dx.doi.org/10.1016/j.jpba.2008.11.005
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2.2. RP HPLC retention data of drugs

A Merck-Hitachi (Vienna, Austria) HPLC system was employed
for chromatographic measurements of binding of the compounds

Table 1
List of structural parameters of drugs employed in ANN analysis.

Number Name Descriptor

Electronic parameters
1. Dipole moment �
2. HOMO energy HOMO
3. LUMO energy LUMO
4. Energy difference between molecular orbitals

(LUMO and HOMO)
DLH

5. Dielectric energy DE

Parameters reflecting the size (bulkiness) of the agents
6. Atom count AC
7. Molecular weight MW
8. Molar refractivity MR
9. Molar refractivity-GC MR-GC
10. Molecular connectivity index of zero order X-0
11. Molecular connectivity index of first order X-1
12. Molecular connectivity index of second order X-2
13. Valence connectivity index of zero order X0vC
14. Valence connectivity index of first order X1vC
15. Valence connectivity index of second order X2vC
16. Molecular shape index of first order �-1
17. Molecular shape index of second order �-2
18. Molecular shape index of third order �-3
19. Conformation minimum energy CME
20. Steric energy SE
21. Sum of atomic Van der Waals volumes (scaled

on a carbon atom)
Sv

22. V total size index/unweighted Vu
23. V total size index/weighted by atomic masse Vm
24. V total size index/weighted by atomic van der

Waals volumes
Vv

25. V total size index/weighted by atomic
Sanderson electronegatives

Ve

26. V total size index/weighted by atomic
polarizabilities

Vp

27. V total size index/weighted by atomic
electrotopological states

Vs

28. Sum of Kier–Hall electrotopological states Ss
29. Fragment-based polar surface area PSA
30. Solvent accessibility surface area SASA
31. Polarizability P
32. Sum of atomic Sanderson electronegatives

(scaled on a carbon atom)
Se

33. Sum of atomic polarizabilities (scaled on a
carbon atom)

Sp

34. Total energy TE
92 A. Buciński et al. / Journal of Pharmaceuti

arameter determined on IAM column (log kIAM). In a detailed QSRR
nalysis of log kAGP data, the structural parameters reflecting the
olecular size of the analyte (ST), and the electron excess charge on

he aliphatic nitrogen (Nch), also appeared statistically significant.
A further investigation on an AGP column included a wider

roup of analytes [18]. Retention data (log kAGP), were determined
or 52 basic drugs of diverse chemical structures and pharmacologi-
al activities. Among them, one could find: antagonists of histamine
1 and H2 receptors, antagonists of �-adrenoceptors, and drugs
cting on �-adrenergic receptors.

Accurate predictions of retention could be achieved theoret-
cally, if the nature of intermolecular interactions determining

olecular recognition of the analytes by the counterparts form-
ng the chromatographic systems were properly quantified. But
hat situation is rather unrealistic. Therefore, in chemical prac-
ice approximate, predictions however useful, can be realized
hich are valid in statistical terms rather than in strict thermody-
amic categories [19]. QSRR are statistically derived relationships
etween dependent variable (a chromatographic parameter) and

ndependent variables (the descriptors characterizing the molec-
lar structure of analytes). QSRR have been applied not only for
valuate properties of HPLC stationary phases (e.g., to predict
elative differences in binding activity of drugs to AGP immo-
ilized on the silica surface), but also to: (i) predict retention
or a new analyte, (ii) get insight into the molecular mechanism
f separation operating in a given chromatographic system, (iii)
dentify the most informative structural descriptors of analytes
nd (iv) evaluate complex physicochemical properties of analytes
20].

In the chemical-property-prediction studies a few standard
alculation procedures are employed. QSRR are most commonly
erived by multiple regression analysis (MRA) [20]. The fun-
amental problem with multiple regression is that considering
imultaneously a number of structural parameters (independent
ariables) cannot be mutually related, i.e., they should be as much
rthogonal as possible. At the same time, the properties within the
eries of analytes requested to derive statistically significant and
hysically meaningful QSRR should be evenly distributed and cover
wide range of individual structural descriptor values. In addi-

ion, the series of model analytes must be large enough to exclude
hance correlations but not too big to save time and effort neces-
ary for chromatographic and structural analysis [20]. It may appear
hat for individual series of analytes it is impossible to observe all
hose requirements. The question arises then if other data process-
ng methods are able to provide acceptable retention prediction.
pecially promising from that point of view appear currently the
rtificial neural networks (ANN).

The artificial neural network analysis is a method of data anal-
sis, which is to emulate the human brain’s way of working.
eural nets exhibit the way in which arrays of neurons proba-
ly function in biological learning and memory. ANN differs from
lassical computer programs in that they “learn” from a set of
xamples rather than are programmed to get the right answer. The
nformation is encoded in the strength of the network’s “synap-
ic” connections [21]. In chemistry and related fields of research
consequently increasing interest in neural-network computing

as been noted since 1986. Very recently several attempts were
eported to use ANN to model chromatographic retention [22].
NNs found also application to compound classification, modeling
f structure–activity relationships [23], identification of potential
rug targets and the localization of structural and functional fea-

ures of biopolymers [24].

The aim of the current study was to design and test the appropri-
te ANN, which could allow to predict chromatographic retention
n the basis of structural descriptors describing the structure of the
elected basic drugs.
Biomedical Analysis 50 (2009) 591–596

2. Materials and methods

2.1. Structural parameters from molecular modeling

Descriptors of the structure of drugs were calculated by standard
molecular modeling. HyperChem program for personal comput-
ers with the extension ChemPlus (Hypercube, Waterloo, Canada)
was used. The software performed geometry optimization by the
molecular mechanics MM+ force field method which was followed
by quantum chemical calculations according to the semi-empirical
AM1 method. Moreover, the set of structural descriptors was sup-
plemented with Dragon software (Milan Chemometris and QSAR
Research Group, Milan, Italy). The list of descriptors is presented in
Table 1.
35. Heat of formation HF

Lipophilicity parameters
36. Moriguchi n-octanol–water partition

coefficient
M log P

Logarithm of HPLC retention factor (AGP column) – experimental log k (AGP)
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.Bucińskiet

al./JournalofPharm
aceuticaland

Biom
edicalA

nalysis
50

(2009)
591–596

593

Table 2
List of drugs studied, log k (AGP) values and structural parameters.

Name Group* AC MW TE HF HOMO LUMO DLH MR MR-GC P � M log P X-0 X-1 X-2 X0vC X1vC

Acebutolol C 52 336.43 −187.306 −165.968 −9.037 −0.211 8.826 93.087 93.664 37.526 4.314 1.548 18.113 11.329 10.13 14.887 8.321
Alprenolol C 41 249.352 −133.923 −59.285 −9.179 0.093 9.272 74.662 74.931 29.576 1.973 2.37 13.38 8.63 7.247 11.225 6.362
Antazoline A 39 265.357 −134.364 66.911 −8.622 0.099 8.721 84.668 74.189 33.279 1.272 2.629 13.623 9.916 8.284 11.496 7.028
Atenolol C 41 266.339 −148.362 −116.559 −9.127 0.194 9.321 73.504 73.773 29.638 3.042 0.925 14.251 8.969 8.17 11.426 6.386
Betaxolol C 51 307.432 −167.855 −97.87 −9.078 0.228 9.306 88.638 88.907 35.838 1.691 2.383 15.786 10.631 9.268 13.755 8.341
Bisoprolol C 54 325.447 −181.557 −163.648 −9.166 0.209 9.375 92.151 92.42 36.814 1.573 1.595 17.079 10.969 9.572 14.749 8.296
Bopindolol C 56 380.486 −202.842 −69.011 −8.182 −0.199 7.983 109.514 110.841 44.75 1.027 3.214 20.148 13.315 12.845 16.912 9.539
Bromonidine D 27 292.138 −121.805 86.149 −8.802 −0.942 7.86 68.79 62.458 28.645 2.921 1.542 11.665 8.343 7.291 10.529 6.083
Bupranolol C 40 271.786 −140.372 −92.761 −9.171 −0.142 9.029 74.858 75.127 30.03 2.7 2.729 13.759 8.277 8.437 12.213 6.476
Celiprolol C 60 379.498 −210.94 −169.87 −9.18 −0.32 8.86 106.463 107.04 42.603 5.035 1.654 20.613 12.568 11.918 17.257 9.338
Chlorpheniramine A 38 274.793 −132.847 37.297 −9.047 −0.164 8.883 80.953 86.08 32.598 1.83 3.101 13.665 9.165 8.053 12.139 6.855
Chloropyramine A 40 289.807 −142.182 43.964 −8.599 −0.084 8.515 86.08 80.953 34.14 1.985 3.53 14.372 9.648 8.491 12.716 7.079
Cimetidine B 33 252.337 −127.872 77.351 −8.951 −0.374 8.577 72.458 59.833 26.147 2.391 0.821 12.51 8.274 6.369 10.765 6.38
Cinnarizine A 56 368.521 −182.634 94.535 −8.792 −0.069 8.723 119.865 111.144 47.551 0.663 4.809 19.02 13.899 11.589 16.322 10.179
Cirazoline D 38 244.336 −128.178 13.362 −8.968 0.24 9.208 74.561 64.351 29.778 1.778 2.384 12.535 8.754 7.816 11.123 6.756
Cicloprolol C 52 323.431 −180.026 −125.138 −8.822 0.164 8.986 89.823 90.361 36.519 2.052 1.863 16.493 11.131 9.622 14.163 8.481
Diphenhydramine A 40 255.359 −131.075 9.22 −9.145 0.143 9.288 79.927 79.927 31.687 1.068 3.262 13.502 9.271 7.785 11.621 6.634
Dimethindene A 46 292.423 −146.541 52.182 −8.725 −0.12 8.605 94.428 93.554 37.558 2.292 3.88 15.527 10.648 9.585 13.712 8.018
Doxazosin D 58 451.481 −250.591 −97.431 −8.415 −0.745 7.67 121.638 113.988 49.863 3.816 0.876 22.949 16.067 14.352 18.484 10.686
Esmolol C 46 295.378 −165.461 −166.498 −9.172 0.135 9.307 81.052 81.321 32.658 2.076 1.836 15.665 10.007 8.631 12.964 7.209
Famotidine B 37 352.447 −177.328 −9.359 −8.695 −0.793 7.902 90.809 58.62 28.416 7.618 −0.509 15.88 9.76 9.683 13.34 9.036
Pheniramine A 38 240.347 −121.08 44.151 −9.002 −0.062 8.94 76.148 76.148 30.518 1.642 3.019 12.795 8.771 7.431 11.082 6.377
Phentolamine D 40 281.357 −146.63 19.338 −8.566 −0.039 8.527 85.745 76.089 34.118 2.153 2.357 14.656 10.22 9.102 12.082 7.127
Isothipendyl A 39 285.406 −138.266 61.452 −7.942 −0.434 7.508 86.661 77.025 32.469 1.274 2.733 14.113 9.665 8.773 12.892 7.641
Carteolol C 45 292.377 −161.261 −125.494 −9.057 −0.247 8.81 81.359 80.369 33.142 2.852 1.306 15.458 9.849 9.815 12.902 7.326
Ketotifen A 41 309.425 −149.988 28.183 −9.081 −0.992 8.089 93.476 88.532 35.141 4.073 3.717 15.104 10.737 9.777 13.58 8.717
Clonidine D 23 230.096 −107.462 32.09 −8.975 −0.19 8.785 59.384 52.308 23.618 1.982 2.616 9.966 6.771 5.936 8.861 5.021
Labetalol C 48 328.41 −177.45 −97.076 −9.326 −0.069 9.257 93.93 93.93 37.677 3.76 2.124 17.527 11.469 10.199 13.775 8.052
Mepyramine A 44 285.388 −149.788 13.123 −8.555 0.168 8.723 87.738 88.007 34.703 2.413 2.293 15.079 10.186 8.66 12.99 7.124
Metiamide B 31 244.372 −115.057 51.612 −8.537 −0.553 7.984 72.993 73.824 22.895 4.226 0.137 11.096 7.236 5.82 10.595 6.322
Metoprolol C 44 267.367 −147.95 −119.421 −9.048 0.233 9.281 76.696 76.965 30.597 1.566 1.653 14.088 9.113 7.683 12.056 6.736
Moxonidine D 28 241.68 −126.553 2.702 −9.07 −0.557 8.513 64.18 55.142 24.996 2.616 0.009 11.544 7.703 6.772 9.798 5.217
Nadolol C 49 309.405 −173.022 −169.887 −9.055 0.33 9.385 85.524 85.793 34.378 2.089 1.358 16.328 10.26 10.323 13.542 7.788
Naphazoline D 30 210.278 −105.38 52.557 −8.91 −0.596 8.314 67.3 56.821 26.737 2.318 2.879 10.795 7.933 6.786 9.11 5.672
Nifenalol C 32 224.259 −126.748 −44.848 −9.8 −1.08 8.72 61.759 61.759 23.948 6.468 1.8 12.129 7.503 6.867 9.382 5.162
Nizatidine B 42 331.45 −168.148 42.176 −9.081 −0.645 8.436 93.6 85.746 30.536 6.291 0.296 15.665 10.007 8.716 14.091 8.471
Oxprenolol C 40 263.336 −144.659 −82.439 −8.993 0.289 9.282 73.372 71.391 29.794 1.856 1.439 13.828 9.113 8.057 11.374 6.579
Pindolol C 38 248.324 −134.836 −50.923 −8.309 0.071 8.38 71.492 71.73 28.917 2.576 1.182 12.958 8.665 7.7 10.811 6.269
Pizotifen A 42 295.442 −139.675 54.993 −8.862 −0.334 8.528 92.843 87.445 34.836 1.049 4.221 14.234 10.326 9.238 13.379 8.763
Practolol C 41 266.339 −148.331 −116.835 −8.781 0.08 8.861 73.456 73.725 29.823 2.354 1.193 14.251 8.969 8.17 11.642 6.39
Prazosin D 49 383.406 −212.97 −57.567 −8.376 −0.701 7.675 102.974 96.374 42.281 2.439 0.797 19.673 13.601 12.019 15.714 8.874
Promathazine A 40 284.418 −136.11 54.705 −7.893 −0.203 7.69 88.504 80.671 32.955 2.234 3.942 14.113 9.665 8.773 13.022 7.781
Propranolol C 40 259.347 −137.945 −53.353 −8.672 −0.467 8.205 76.825 77.093 31.043 1.323 2.492 13.665 9.165 8.053 11.466 6.686
Ranitidine B 43 314.402 −168.974 −0.493 −9.098 −0.769 8.329 87.591 87.607 31.303 6.487 0.613 15.665 10.007 8.716 13.404 7.734
Roxatidine B 48 306.404 −168.347 −117.475 −9.049 0.258 9.307 87.166 84.537 34.878 2.777 1.281 15.623 10.775 8.79 13.091 8.094
Sotalol C 38 272.362 −145.305 −109.033 −9.112 −0.51 8.602 71.489 68.989 26.906 2.845 0.709 13.759 8.277 8.494 11.66 7.661
Tiamenidine D 27 219.732 −102.984 9.008 −9.201 0.011 9.212 60.251 52.434 20.971 2.894 1.555 9.259 6.271 5.582 9.159 6.062
Timolol C 45 316.418 −171.129 −108.999 −8.942 −0.925 8.017 85.956 71.131 31.391 2.404 −0.479 15.295 9.955 9.535 13.65 7.897
Tramazoline D 33 215.297 −111.185 27.293 −8.837 0.233 9.07 67.257 60.925 26.711 2.097 3.069 10.795 7.933 6.786 9.422 6.095
Tripelennamine A 40 255.362 −130.406 52.225 −8.675 0.099 8.774 81.275 81.275 32.04 1.794 2.589 13.502 9.254 7.869 11.659 6.601
Triprolidine A 43 278.396 −139.341 53.418 −8.98 −0.41 8.57 89.349 83.67 35.809 0.558 3.489 14.493 10.326 8.81 12.626 7.737
Tymazoline A 37 232.325 −122.563 −20.594 −9.195 0.179 9.374 71.322 61.112 28.108 1.699 2.128 12.251 8.165 7.314 10.786 6.171
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Table 2 (Continued )

Name X2vC SASA DE �-1 �-2 �-3 CME SE Sv Se Sp Ss Vu Vm Vv Ve Vp Vs PSA log k AGP

Acebutolol 6.093 393.152 −0.769 22.042 11.584 8.792 −166.007 −7.62 29 52 31 59 208 128 158 204 167 120 87.66 0.676
Alprenolol 4.628 304.02 −0.27 16.056 8.992 6.667 −59.352 1.134 23 40 25 39 56 32 41 55 44 30 41.49 1.49
Antazoline 4.932 297.785 −0.366 14.917 7.852 4.496 66.901 20.897 24 38 26 38 118 60 82 113 88 54 3.24 1.154
Atenolol 4.815 319.037 −0.667 17.053 9.031 8 −119.668 −17.566 23 41 24 47 98 58 68 96 73 58 84.58 0.499
Betaxolol 6.44 381.206 −0.385 18.34 9.988 7.422 −97.908 271.846 28 50 30 45 141 75 98 137 106 68 50.72 0.838
Bisoprolol 6.144 403.435 −0.456 21.043 12.375 11.224 −163.671 7.935 30 53 32 49 178 88 125 171 136 73 59.95 0.694
Bopindolol 8.005 410.008 −0.591 22.68 10.347 7.039 −69.06 −0.075 34 55 36 60 151 88 117 145 124 80 63.35 1.94
Bromonidine 4.426 255.525 −0.525 12.055 5.325 2.56 86.137 −0.285 18 27 19 36 42 38 33 41 36 25 62.2 0.831
Bupranolol 5.937 305.048 −0.293 16.056 6.963 6.667 −92.831 −0.508 23 39 25 40 81 38 56 78 59 38 41.49 0.981
Celiprolol 7.465 426.107 −0.797 25.037 11.87 9.36 −169.894 −27.577 33 59 36 65 160 85 111 155 120 82 90.9 0.7
Chlorpheniramine 5.387 305.616 −0.303 15.39 7.695 4.795 37.269 −3.748 25 39 26 40 98 79 79 97 86 63 19.37 1.202
Chloropyramine 5.476 307.81 −0.252 16.372 8.444 5.732 43.941 4.558 24 37 25 38 85 67 67 85 72 55 16.13 1.431
Cimetidine 4.369 280.955 −1.331 15.059 9 5.928 77.299 1.19 20 33 21 39 98 58 74 97 74 69 89.8 0.482
Cinnarizine 7.374 402.415 −0.308 21.24 11.408 6.25 94.514 12.551 35 54 37 51 248 158 197 242 207 152 6.48 2.148
Cirazoline 5.237 282.65 −0.343 13.005 5.551 2.659 13.292 274.117 22 37 24 34 74 34 50 71 54 29 9.23 1.082
Cicloprolol 6.366 395.078 −0.433 19.326 10.78 8.081 −125.212 273.885 29 51 31 48 163 86 114 157 123 78 59.95 0.735
Diphenhydramine 4.875 305.829 −0.257 15.39 8.323 5.12 9.169 −7.388 24 39 26 37 94 52 70 91 74 48 12.47 1.14
Dimethindene 6.429 338.86 −0.346 16.844 7.713 4.11 52.183 0.828 28 44 30 41 99 56 70 97 74 51 16.13 1.382
Doxazosin 7.81 443.459 −0.926 24.684 10.948 5.259 −97.45 −8.225 36 59 37 74 203 127 145 199 154 132 112.27 1.798
Esmolol 5.248 353.803 −0.508 19.048 10.68 8.889 −166.517 −3.313 26 46 27 50 114 67 79 113 84 66 67.79 0.649
Famotidine 6.783 355.674 −1.932 19.048 9.209 9.586 −9.378 −87.166 22 38 24 59 128 88 91 128 93 99 199.04 0.731
Pheniramine 4.81 286.936 −0.301 14.41 7.556 4.566 44.129 −3.867 23 37 24 34 63 35 46 62 49 32 16.13 0.926
Phentolamine 5.197 304.751 −0.481 15.879 7.513 4.26 19.34 36.687 25 39 26 44 140 75 92 138 100 71 23.47 1.264
Isothipendyl 6.402 294.021 −0.297 14.917 6.406 3.122 61.428 24.035 24 38 26 38 78 44 58 75 62 40 44.67 1.58
Carteolol 6.426 325.035 −0.566 17.355 7.513 5.606 −125.519 −13.806 26 44 27 48 101 60 72 99 77 59 70.59 0.706
Ketotifen 7.118 305.334 −0.412 15.523 6.481 2.922 28.174 31.528 27 39 29 47 84 61 65 83 70 58 48.55 1.459
Clonidine 3.693 227.207 −0.426 10.516 4.68 2.534 32.092 2.77 15 23 16 31 34 25 26 34 28 20 24.06 0.847
Labetalol 5.99 371.717 −0.773 20.314 10.222 6.682 −97.081 −30.123 29 47 30 59 127 88 93 128 98 97 95.58 1.106
Mepyramine 5.261 329.541 −0.367 17.355 9.209 5.95 13.072 −1.781 26 43 28 42 143 80 102 140 110 72 28.6 1.113
Metiamide 4.546 283.154 −1.679 13.067 7.302 5.04 51.584 5.988 18 30 20 31 62 34 45 61 46 34 110.13 0.517
Metoprolol 4.915 332.184 −0.368 17.053 9.834 8 −120.966 1.938 24 43 26 41 101 54 69 98 74 50 50.72 0.564
Moxonidine 3.586 255.952 −0.549 12.457 5.558 3.03 2.698 0.43 17 28 18 36 53 23 34 50 37 22 21.26 0.528
Nadolol 7.032 340.953 −0.595 18.34 7.713 5.551 −173.837 11.769 27 48 29 52 149 92 110 146 117 91 81.95 0.606
Naphazoline 4.07 242.44 −0.34 11.111 5.104 2.488 52.555 −6.188 19 29 20 30 38 19 25 37 27 16 0 1.092
Nifenalol 3.927 258.981 −0.702 14.063 6.667 4.817 −44.855 −5.49 18 32 19 44 60 44 42 61 44 49 66.4 0.639
Nizatidine 6.576 349.508 −1.35 19.048 10.68 8.889 42.1 12.382 24 42 27 50 163 110 122 163 126 111 114.98 0.46
Oxprenolol 4.978 296.955 −0.269 15.39 7.136 3.986 −82.479 1.503 23 39 24 42 52 31 38 51 41 31 50.72 1.21
Pindolol 4.723 294.008 −0.555 14.41 6.963 4.267 −50.956 4.433 22 37 23 39 96 58 72 93 76 57 57.28 0.87
Pizotifen 7.197 300.739 −0.219 14.583 6.246 2.813 54.988 13.793 27 41 29 36 100 63 71 98 78 52 31.48 1.898
Practolol 4.733 320.611 −0.629 17.053 9.031 8 −116.843 −12.971 23 41 24 46 101 61 72 99 77 61 70.59 0.509
Prazosin 6.39 386.753 −0.889 21.24 9.428 4.542 −57.582 19.214 30 49 31 64 264 150 182 256 196 146 106.95 1.39
Promethazine 6.545 295.423 −0.261 14.917 6.406 3.122 54.673 28.341 25 39 27 37 73 43 55 71 58 40 31.78 1.833
Propranolol 5.005 306.437 −0.313 15.39 7.695 4.795 −53.454 −10.441 23 39 25 40 80 49 60 78 64 48 41.49 1.612
Ranitidine 5.768 354.18 −1.485 19.048 10.68 8.889 −0.65 11.332 24 43 26 51 140 81 101 138 102 88 99.88 0.6
Roxatidine 5.694 357.061 −0.634 18.34 10.714 7.422 −117.509 −1.455 27 47 29 49 177 109 132 174 140 104 61.8 0.773
Sotalol 6.323 301.704 −1.07 16.056 6.963 6.667 −109.084 −0.002 21 38 23 47 72 48 49 73 52 52 86.81 0.516
Tiamenidine 5.393 231.305 −0.488 9.551 4.022 2.083 8.983 −2.775 16 27 18 26 34 28 27 34 30 21 61.72 0.808
Timolol 6.617 338.6 −0.568 17.355 8.022 5.95 −109.065 37.764 25 45 27 46 124 99 104 122 114 85 82.2 0.696
Tramazoline 4.432 249.14 −0.463 11.111 5.104 2.488 27.258 2.934 20 32 21 29 47 23 32 46 34 20 36.42 1.315
Tripelennamine 4.898 299.988 −0.297 15.39 8.323 5.479 52.216 −3.485 24 39 25 36 110 57 79 106 86 52 19.37 1.066
Triprolidine 5.707 323.083 −0.317 15.879 8.022 4.488 53.418 2.901 26 42 28 39 127 69 90 124 96 61 16.13 1.185
Tymazoline 4.74 272.102 −0.324 13.432 6.25 3.729 −20.598 3.76 21 36 23 33 46 22 30 44 33 18 9.23 1.306

* The agents studied belong to the following pharmacological groups: antagonists of histamine H1 receptors (A), antagonists of histamine H2 receptors (B), �-adrenolytics (C) and drugs acting on �-adrenoreceptors (D).
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Table 3
Statistics of ANN processing used during the study.

Statistics Learning set Validating set Testing set

Mean 0.951 1.111 1.108
Data S.D.a 0.379 0.414 0.540
Error Meanb −0.006 0.024 0.037
Error S.D.c 0.084 0.130 0.173
Abs. E. Meand 0.067 0.107 0.144
Correlatione 0.975 0.950 0.972

a Standard deviation of the target output variable.
b Average error of the output variable.
c Standard deviation of errors for the output variable.

of basic drugs is also very important for their binding to AGP.
This physicochemical property is reflected mainly by the following
parameters: heat of formation (HF), AC, MR, as well as by connec-
tivity indices: X-1, �-3, X1vC. The first order connectivity index, X-1
encodes single bond properties and � present information concern-
ig. 1. Architecture of artificial neural network predicting chromatographic reten-
ion on the basis of selected structural descriptors. ANN model type: MLP
6:36-5-1:1.

tudied to AGP [18]. The retention factors of the compounds
tudied were determined isocratically on Chiral AGP column
00 mm × 4 mm I.D. (ChromTech, Norsborg, Sweden) packed with
1-acid glycoprotein chemically bound to silica particles of 5 �m
iameter. The mobile phase was isopropanol – 0.01 M Sørensen
hosphate buffer pH 6.5 (5:95, v/v). The mobile phase flow-rate
as 0.5 ml/min. The detection wavelength was 215 nm. Logarithms
f retention factors, log kACP, were calculated taking the sodium
itrate peak as a measure of dead volume. A 1 mg amount of a drug
olute was dissolved in 4 ml of methanol. The solution was diluted
0-fold with methanol and 20 �l of the final solution was injected
nto the column. The logarithms of retention factors of a series of
rugs determined on AGP column taken from literature [18] were
ollected in Table 2 .

.3. Artificial neural network (ANN) analysis

HPLC retention data on AGP column – log k (AGP), for all the
nalytes from Table 1 were divided randomly into three groups.
ariables for the analyzed drugs were divided into learning set with
6 compounds, validation set with 16 compounds and testing set
ith 10 compounds. Fig. 1 presents the architecture of the ANN
odel used for predictions of molecular interactions between AGP

nd selected drugs. An artificial neural network based on a mul-
ilayer perceptron consisting of 36 artificial neurons in the input
ayer, five in the hidden layer and one neuron in the output layer was
sed. A two-stage procedure with back-propagation and conjugate
radient descent methods were used to train the network. In the
ase of the network applied, learning was completed in 100 epochs
y back-propagation method and 37 epochs by conjugate gradient
escent method. First, ANN analysis was performed with the train-

ng and validation sets of data by means of iterative minimalization
rocedure allowing to optimize parameters of the network. Data
rom the learning set were presented in a randomized manner dur-
ng the learning process. The third data set (test set) was served as
hecking of the generalization ability of the learned ANN.

. Results and discussion

The list of numerical values of the structural parameters of the

rugs studied derived from calculation chemistry, reflecting their
lectronic properties, size (bulkiness) and lipophilicity are summa-
ized in Table 1. The final model possessed a 36-5-1 architecture
nd correlation coefficients for learning, validating and testing sets
qualed 0.975, 0.950 and 0.972, respectively (Table 3).
d Average absolute error (difference between target and actual output values) of
the output variable.

e The standard Pearson-R correlation coefficient between the target and actual
output values.

An ANN model was used to correlate chromatographic behavior
of the set of structurally diverse drugs with their structural descrip-
tors and to create a model useful to prediction of retention values. A
correlation between experimental and predicted log k (AGP) values
in learning, validating and testing set is given in Fig. 2.

Table 1 contains the list of the structural parameters of the drugs
studied derived from calculation chemistry, reflecting their elec-
tronic properties, size (bulkiness) and lipophilicity. The numerical
values of descriptors along with log k (AGP) of the agents are sum-
marized in Table 2. In Table 4 the results of sensitivity analysis of
inputs are presented, which one was used to identify significance
of individual molecular descriptors and to select descriptors that
were considered the most important.

Using the proposed method, i.e., artificial neural network, it
was possible to predict what physicochemical property descriptors
influence on interactions between AGP and selected drugs (the sen-
sitivity above one). Molecular descriptors with sensitivities lower
than one were seemed to be detrimental to the model ANN.

It is rather expected that highly significant structural param-
eters for ANN processing of retention data are lipophilicity of
drugs (CM log P) and their electronic descriptors (highest occu-
pied molecular orbital (HOMO) and DLH). They correspond to
second, fourth and eleventh sensitivity ranks, respectively. The
results obtained confirmed also that the bulkiness of the molecules
Fig. 2. Correlations between the calculated and the experimental retention data
determined on an �1-acid glycoprotein column.
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Table 4
Sensitivity analysis results for the structural parameters of drugs considered in ANN
analysis.

Descriptor Error Rank

HF 1.620 1
M log P 1.478 2
X-1 1.241 3
HOMO 1.185 4
AC 1.166 5
MR 1.162 6
�-3 1.160 7
X1vC 1.134 8
P 1.127 9
Sp 1.104 10
DLH 1.104 11
CME 1.103 12
Se 1.067 13
PSA 1.059 14
�-2 1.059 15
X2vC 1.058 16
Ss 1.048 17
Vu 1.031 18
SASA 1.031 19
Ve 1.030 20
Sv 1.022 21
X-2 1.014 22
X-0 1.013 23
TE 1.010 24
Vs 1.006 25
� 0.998 26
Vm 0.996 27
LUMO 0.994 28
X0vC 0.990 29
�-1 0.990 30
MW 0.981 31
Vv 0.969 32
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[21] J. Zupan, J. Gasteiger, Neural Networks for Chemists. An Introduction, VCH,
E 0.968 33
p 0.964 34
R-GC 0.961 35

E 0.955 36

ng the shape, size, branching pattern and similarity of molecular
raphs.

In fact, it was rather surprising that heat of formation occurred
he most significant descriptor affecting the retention of the agents
n AGP column. Heat of formation reflect basically the differences
n bulkiness among the analytes [20], hence that descriptor can
e treated as describing significantly a geometry of the molec-
lar structure. The other significance values for sensitivity ranks
ere polarizability parameters (P and Sp), conformation minimum

nergy (CME), polar surface area (PSA) and further connectiv-

ty and topological shape indices (connectivity indices X-1 and
-3) (Table 4). PSA can provide information about surface diffu-
ion, absorption, contact surface and information about size of the
olecules. In turn the contact surface area can be used an accurate

redictor of water solubility and can be viewed as advice of the

[
[

[

Biomedical Analysis 50 (2009) 591–596

extent to which the solute is exposed to intermolecular interaction
with the solvent. PSA can also be useful tool to indicates the possi-
bility of a compound to form hydrogen bonds which are an essential
component of intermolecular interaction, e.g., protein–drug.

4. Conclusions

In the present study, a set of thirty-six descriptors, including
both stationary phase and analytes properties, is adopted to build
a QSRR model able to describe the retention behaviour of 52 basic
drugs of diverse chemical structures as follows antagonists of his-
tamine H1 and H2 receptors, �-adrenolytics, and drugs acting on
�-adrenoreceptors. A artificial neural network provides an accurate
QSRR model. In addition, ANNs model is able to detect relationships
between depend (log k) and independent (descriptors) variables.
Finally, AGP columns can serve as instrument with ability to demon-
strate types of interactions between acid glycoprotein and drugs.
Useful information can be derived from the chemical structure of a
drug to calculate descriptors describing various properties of that
drug.
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